- 建立一个包含n个许可的信号量(内部的计数为n),当一个线程从信号量中请求一个许可(调用acquire()),如果信号量中有许可的话(n大于0),那么线程成功获取许可,信号量内部许可数量减1(n减1);如果信号量中没有许可(n等于0),那么当前线程阻塞。
- 当一个线程归还许可(调用release(),内部计数加1),其他在acquire()方法处等待的线程便有可能被唤醒来竞争许可。
- 公平模式下,如果有线程在acquire()处等待,新来的请求线程会排在这些等待线程后面;非公平模式下,新来的请求线程可能会插队,比在acquire()处等待的线程提前申请到许可。
代码分析
/*
* 基于计数信号量,可用来管理一组许可
*/
public class Semaphore implements java.io.Serializable {
private static final long serialVersionUID = -3222578661600680210L;
/** All mechanics via AbstractQueuedSynchronizer subclass */
private final Sync sync;
/**
* 通过AQS的state表示许可的数量,包含公平和非公平的实现
*/
abstract static class Sync extends AbstractQueuedSynchronizer {
private static final long serialVersionUID = 1192457210091910933L;
Sync(int permits) {
setState(permits);
}
final int getPermits() {
return getState();
}
// 共享模式非公平的请求
final int nonfairTryAcquireShared(int acquires) {
for (;;) {
// 获取当前许可数量
int available = getState();
// 计算申请后剩余数量
int remaining = available - acquires;
/*
* 如果申请后剩余>=0,则通过CAS修改,修改成功后返回剩余数量;
* 如果申请后剩余<0,则直接返回数量
*/
if (remaining < 0 ||
compareAndSetState(available, remaining))
return remaining;
}
}
/*
* 释放所,CAS,有int越界判断
*/
protected final boolean tryReleaseShared(int releases) {
for (;;) {
int current = getState();
int next = current + releases;
if (next < current) // overflow
throw new Error("Maximum permit count exceeded");
if (compareAndSetState(current, next))
return true;
}
}
/*
* 相当于release的逆操作
*/
final void reducePermits(int reductions) {
for (;;) {
int current = getState();
int next = current - reductions;
if (next > current) // underflow
throw new Error("Permit count underflow");
if (compareAndSetState(current, next))
return;
}
}
/*
* 将count置为0并返回
*/
final int drainPermits() {
for (;;) {
int current = getState();
if (current == 0 || compareAndSetState(current, 0))
return current;
}
}
}
/**
* 非公平
*/
static final class NonfairSync extends Sync {
private static final long serialVersionUID = -2694183684443567898L;
NonfairSync(int permits) {
super(permits);
}
protected int tryAcquireShared(int acquires) {
return nonfairTryAcquireShared(acquires);
}
}
/**
* 公平
*/
static final class FairSync extends Sync {
private static final long serialVersionUID = 2014338818796000944L;
FairSync(int permits) {
super(permits);
}
protected int tryAcquireShared(int acquires) {
for (;;) {
// 公平版的请求,需要先检查同步队列里有没有比当前线程更早的线程在等待。
if (hasQueuedPredecessors())
return -1;
int available = getState();
int remaining = available - acquires;
if (remaining < 0 ||
compareAndSetState(available, remaining))
return remaining;
}
}
}
public Semaphore(int permits) {
sync = new NonfairSync(permits);
}
public Semaphore(int permits, boolean fair) {
sync = fair ? new FairSync(permits) : new NonfairSync(permits);
}
/**
* Acquires a permit from this semaphore, blocking until one is
* available, or the thread is {@linkplain Thread#interrupt interrupted}.
*
* <p>Acquires a permit, if one is available and returns immediately,
* reducing the number of available permits by one.
*
* <p>If no permit is available then the current thread becomes
* disabled for thread scheduling purposes and lies dormant until
* one of two things happens:
* <ul>
* <li>Some other thread invokes the {@link #release} method for this
* semaphore and the current thread is next to be assigned a permit; or
* <li>Some other thread {@linkplain Thread#interrupt interrupts}
* the current thread.
* </ul>
*
* <p>If the current thread:
* <ul>
* <li>has its interrupted status set on entry to this method; or
* <li>is {@linkplain Thread#interrupt interrupted} while waiting
* for a permit,
* </ul>
* then {@link InterruptedException} is thrown and the current thread's
* interrupted status is cleared.
*
* @throws InterruptedException if the current thread is interrupted
*/
public void acquire() throws InterruptedException {
sync.acquireSharedInterruptibly(1);
}
/**
* Acquires a permit from this semaphore, blocking until one is
* available.
*
* <p>Acquires a permit, if one is available and returns immediately,
* reducing the number of available permits by one.
*
* <p>If no permit is available then the current thread becomes
* disabled for thread scheduling purposes and lies dormant until
* some other thread invokes the {@link #release} method for this
* semaphore and the current thread is next to be assigned a permit.
*
* <p>If the current thread is {@linkplain Thread#interrupt interrupted}
* while waiting for a permit then it will continue to wait, but the
* time at which the thread is assigned a permit may change compared to
* the time it would have received the permit had no interruption
* occurred. When the thread does return from this method its interrupt
* status will be set.
*/
public void acquireUninterruptibly() {
sync.acquireShared(1);
}
/**
* Acquires a permit from this semaphore, only if one is available at the
* time of invocation.
*
* <p>Acquires a permit, if one is available and returns immediately,
* with the value {@code true},
* reducing the number of available permits by one.
*
* <p>If no permit is available then this method will return
* immediately with the value {@code false}.
*
* <p>Even when this semaphore has been set to use a
* fair ordering policy, a call to {@code tryAcquire()} <em>will</em>
* immediately acquire a permit if one is available, whether or not
* other threads are currently waiting.
* This "barging" behavior can be useful in certain
* circumstances, even though it breaks fairness. If you want to honor
* the fairness setting, then use
* {@link #tryAcquire(long, TimeUnit) tryAcquire(0, TimeUnit.SECONDS) }
* which is almost equivalent (it also detects interruption).
*
* @return {@code true} if a permit was acquired and {@code false}
* otherwise
*/
public boolean tryAcquire() {
return sync.nonfairTryAcquireShared(1) >= 0;
}
/**
* Acquires a permit from this semaphore, if one becomes available
* within the given waiting time and the current thread has not
* been {@linkplain Thread#interrupt interrupted}.
*
* <p>Acquires a permit, if one is available and returns immediately,
* with the value {@code true},
* reducing the number of available permits by one.
*
* <p>If no permit is available then the current thread becomes
* disabled for thread scheduling purposes and lies dormant until
* one of three things happens:
* <ul>
* <li>Some other thread invokes the {@link #release} method for this
* semaphore and the current thread is next to be assigned a permit; or
* <li>Some other thread {@linkplain Thread#interrupt interrupts}
* the current thread; or
* <li>The specified waiting time elapses.
* </ul>
*
* <p>If a permit is acquired then the value {@code true} is returned.
*
* <p>If the current thread:
* <ul>
* <li>has its interrupted status set on entry to this method; or
* <li>is {@linkplain Thread#interrupt interrupted} while waiting
* to acquire a permit,
* </ul>
* then {@link InterruptedException} is thrown and the current thread's
* interrupted status is cleared.
*
* <p>If the specified waiting time elapses then the value {@code false}
* is returned. If the time is less than or equal to zero, the method
* will not wait at all.
*
* @param timeout the maximum time to wait for a permit
* @param unit the time unit of the {@code timeout} argument
* @return {@code true} if a permit was acquired and {@code false}
* if the waiting time elapsed before a permit was acquired
* @throws InterruptedException if the current thread is interrupted
*/
public boolean tryAcquire(long timeout, TimeUnit unit)
throws InterruptedException {
return sync.tryAcquireSharedNanos(1, unit.toNanos(timeout));
}
/**
* Releases a permit, returning it to the semaphore.
*
* <p>Releases a permit, increasing the number of available permits by
* one. If any threads are trying to acquire a permit, then one is
* selected and given the permit that was just released. That thread
* is (re)enabled for thread scheduling purposes.
*
* <p>There is no requirement that a thread that releases a permit must
* have acquired that permit by calling {@link #acquire}.
* Correct usage of a semaphore is established by programming convention
* in the application.
*/
public void release() {
sync.releaseShared(1);
}
/**
* Acquires the given number of permits from this semaphore,
* blocking until all are available,
* or the thread is {@linkplain Thread#interrupt interrupted}.
*/
public void acquire(int permits) throws InterruptedException {
if (permits < 0) throw new IllegalArgumentException();
sync.acquireSharedInterruptibly(permits);
}
public void acquireUninterruptibly(int permits) {
if (permits < 0) throw new IllegalArgumentException();
sync.acquireShared(permits);
}
public boolean tryAcquire(int permits) {
if (permits < 0) throw new IllegalArgumentException();
return sync.nonfairTryAcquireShared(permits) >= 0;
}
public boolean tryAcquire(int permits, long timeout, TimeUnit unit)
throws InterruptedException {
if (permits < 0) throw new IllegalArgumentException();
return sync.tryAcquireSharedNanos(permits, unit.toNanos(timeout));
}
public void release(int permits) {
if (permits < 0) throw new IllegalArgumentException();
sync.releaseShared(permits);
}
public int availablePermits() {
return sync.getPermits();
}
public int drainPermits() {
return sync.drainPermits();
}
protected void reducePermits(int reduction) {
if (reduction < 0) throw new IllegalArgumentException();
sync.reducePermits(reduction);
}
public boolean isFair() {
return sync instanceof FairSync;
}
/**
* Queries whether any threads are waiting to acquire. Note that
* because cancellations may occur at any time, a {@code true}
* return does not guarantee that any other thread will ever
* acquire. This method is designed primarily for use in
* monitoring of the system state.
*
* @return {@code true} if there may be other threads waiting to
* acquire the lock
*/
public final boolean hasQueuedThreads() {
return sync.hasQueuedThreads();
}
public final int getQueueLength() {
return sync.getQueueLength();
}
protected Collection<Thread> getQueuedThreads() {
return sync.getQueuedThreads();
}
public String toString() {
return super.toString() + "[Permits = " + sync.getPermits() + "]";
}
}